Extreme bandits
نویسندگان
چکیده
In many areas of medicine, security, and life sciences, we want to allocate limited resources to different sources in order to detect extreme values. In this paper, we study an efficient way to allocate these resources sequentially under limited feedback. While sequential design of experiments is well studied in bandit theory, the most commonly optimized property is the regret with respect to the maximum mean reward. However, in other problems such as network intrusion detection, we are interested in detecting the most extreme value output by the sources. Therefore, in our work we study extreme regret which measures the efficiency of an algorithm compared to the oracle policy selecting the source with the heaviest tail. We propose the EXTREMEHUNTER algorithm, provide its analysis, and evaluate it empirically on synthetic and real-world experiments.
منابع مشابه
Data-Driven Threshold Machine: Scan Statistics, Change-Point Detection, and Extreme Bandits
We present a novel distribution-free approach, the data-driven threshold machine (DTM), for a fundamental problem at the core of many learning tasks: choose a threshold for a given pre-specified level that bounds the tail probability of the maximum of a (possibly dependent but stationary) random sequence. We do not assume data distribution, but rather relying on the asymptotic distribution of e...
متن کاملCBRAP: Contextual Bandits with RAndom Projection
Contextual bandits with linear payoffs, which are also known as linear bandits, provide a powerful alternative for solving practical problems of sequential decisions, e.g., online advertisements. In the era of big data, contextual data usually tend to be high-dimensional, which leads to new challenges for traditional linear bandits mostly designed for the setting of low-dimensional contextual d...
متن کاملMax K-Armed Bandit: On the ExtremeHunter Algorithm and Beyond
This paper is devoted to the study of the max K-armed bandit problem, which consists in sequentially allocating resources in order to detect extreme values. Our contribution is twofold. We first significantly refine the analysis of the ExtremeHunter algorithm carried out in Carpentier and Valko (2014), and next propose an alternative approach, showing that, remarkably, Extreme Bandits can be re...
متن کاملAsymptotic optimal control of multi-class restless bandits
We study the asymptotic optimal control of multi-class restless bandits. A restless bandit is acontrollable process whose state evolution depends on whether or not the bandit is made active. Theaim is to find a control that determines at each decision epoch which bandits to make active in orderto minimize the overall average cost associated to the states the bandits are in. Sinc...
متن کاملResourceful Contextual Bandits
We study contextual bandits with ancillary constraints on resources, which are common in realworld applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, Dudik et al. (2011)) and ...
متن کاملSemi-Bandits with Knapsacks
We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks and combinatorial semi-bandits. The former concerns limited “resources” consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a huge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, supp...
متن کامل